JAK OBRóBKA CIEPLNA PODNOSI ODPORNOść NARZęDZI NA ZUżYCIE?

Jak obróbka cieplna podnosi odporność narzędzi na zużycie?

Jak obróbka cieplna podnosi odporność narzędzi na zużycie?

Blog Article

Obróbka cieplna to technika, która ma na celu zwiększenie właściwości mechanicznych materiałów, w szczególności ich odporności na uszkodzenia. Narzędzia, które są narażone na intensywne obciążenia i działanie agresywnych warunków, takich jak tarcie, wymagają specjalistycznej obróbki, aby zwiększyć ich trwałość. Właśnie tutaj obróbka cieplna odgrywa kluczową rolę, pozwalając na znaczne poprawienie odporności na degradację, co przekłada się na dłuższą eksploatację narzędzi.

Mechanizmy odkształcania narzędzi
Aby zrozumieć, jak obróbka cieplna poprawia odporność narzędzi na zużycie, warto przyjrzeć się mechanizmom, które prowadzą do ich uszkodzenia.

Ścieranie – proces, w którym materiał narzędzia ulegają wytarciu wskutek kontaktu z przerabianym materiałem.
Zmęczenie materiału – powstawanie mikropęknięć w strukturze pod wpływem cyklicznych sił.
Adhezja – przywieranie cząsteczek materiału obrabianego do powierzchni narzędzia, co może prowadzić do jego degradacji.
Korozja – degradacja materiału pod wpływem czynników atmosferycznych, takich jak wilgoć, zanieczyszczenia czy wysokie gorąco.
Obróbka cieplna umożliwia zmianę struktury metalu, co pomaga zredukować te zjawiska i poprawić odporność narzędzi na ścieranie.

Metody obróbki cieplnej w celu wzrostu odporności na ścieranie
Obróbka cieplna obejmuje różnorodne procesy, które mają na celu podniesienie właściwości narzędzi w kontekście odporności na zużycie.

1. Hartowanie
Hartowanie to technika, w którym materiał jest podgrzewany do wysokiej temperatury, a następnie szybko schładzany w medium chłodzącym, takim jak sól. Efektem jest uzyskanie struktury sztywnej, która zapewnia wyjątkową twardość i odporność na ścieranie. Narzędzia poddane hartowaniu są bardziej wytrzymałe na intensywne siły.

2. Odpuszczanie
Odpuszczanie jest procesem, który polega na podgrzewaniu stali do określonej gorączki, a następnie stopniowym jej schładzaniu. Celem jest redukowanie kruchości materiału i wzrost jego plastyczności. Narzędzia, które są jednocześnie twarde i elastyczne, lepiej znoszą obciążenia mechaniczne, co zwiększa ich trwałość.

3. Azotowanie
Azotowanie to technika cieplno-chemiczna, która polega na wprowadzaniu azotu do warstwy powierzchniowej metalu. Dzięki temu powstaje twarda warstwa azotków, która znacząco poprawia odporność na ścieranie oraz korozyjne działanie środowiska. Narzędzia poddane azotowaniu charakteryzują się znakomitą odpornością na uszkodzenia mechaniczne oraz działanie wysokich gorączki.

4. Nawęglanie
Nawęglanie to proces, który polega na nasyceniu powierzchni stali w węgiel, co zwiększa jej twardość. Proces ten pozostawia rdzeń materiału plastyczny, a warstwę wierzchnią wzmacnia węglem. Narzędzia nawęglane są odporne na zużycie i regularne obciążenia.

5. Powłoki ochronne
W celu wzmocnienia odporności na zużycie, stosuje się także powłoki ochronne, takie jak chromowanie, niklowanie czy powłoki ceramiczne. Dzięki tym powłokom, narzędzia stają się bardziej odporne na uszkodzenia oraz agresywny wpływ środowiska.

Przykłady zastosowania obróbki cieplnej w narzędziach
1. Narzędzia skrawające
Wiertła, frezy i noże tokarskie to narzędzia, które są szczególnie narażone na intensywne zużycie. Stosowanie hartowania oraz azotowania pozwala na wzmocnienie ich twardości oraz wytrzymałości na wysokie temperatury, co pozwala na ich dłuższe i efektywniejsze użytkowanie.

2. Narzędzia tłoczące
Matrzyce, stemple i inne narzędzia używane w procesach tłoczenia są podatne na duże obciążenia i ścieranie. Azotowanie oraz nawęglanie tych narzędzi pozwala na wzmocnienie ich odporności na uszkodzenia.

3. Narzędzia ręczne
Młotki, klucze, przecinaki i inne narzędzia ręczne, które wymagają wysokiej odporności, są poddawane hartowanie, co zapewnia im długotrwałą trwałość i odporność na uszkodzenia.

Obróbka cieplna to nieodzowny element w produkcji narzędzi, który pozwala na modyfikację właściwości materiałów i odporności na uszkodzenia. Dzięki odpowiednio dobranym procesom, takim jak hartowanie, odpuszczanie, azotowanie czy nawęglanie, możliwe jest znaczne wzrost żywotności narzędzi, co przekłada się na ich przydatność oraz opłacalność w długoterminowej eksploatacji.

Report this page